Creative and Descriptive Paper Title
Akash Kumar
Yogesh Singh Rawat
[Paper]
[GitHub]

Abstract

In this work, we focus on semi-supervised learning for video action detection which utilizes both labeled as well as unlabeled data. We propose a simple end-to-end consistency based approach which effectively utilizes the un- labeled data. Video action detection requires both, action class prediction as well as a spatio-temporal localization of actions. Therefore, we investigate two types of constraints, classification consistency, and spatio-temporal consistency. The presence of predominant background and static regions in a video makes it challenging to utilize spatio-temporal consistency for action detection. To address this, we propose two novel regularization constraints for spatio-temporal consistency; 1) temporal co- herency, and 2) gradient smoothness. Both these aspects exploit the temporal continuity of action in videos and are found to be effective for utilizing unlabeled videos for action detection. We demonstrate the effectiveness of the proposed approach on two different action detection benchmark datasets, UCF101-24 and JHMDB-21. In addition, we also show the effectiveness of the proposed ap- proach for video object segmentation on the Youtube-VOS which demonstrates its generalization capability. The proposed approach achieves competitive performance by us- ing merely 20% of annotations on UCF101-24 when compared with recent fully supervised methods. On UCF101-24, it improves the score by +8.9% and +11% at 0.5 f-mAP and v-mAP respectively, compared to supervised approach.


Talk


Code



Paper and Supplementary Material

Akash Kumar, Yogesh Singh Rawat.
End-to-End Semi-Supervised Learning for Video Action Detection.
CVPR, 2022.
PDF|Arxiv|Supplementary


[Bibtex]


Acknowledgements

This template was originally made by Phillip Isola and Richard Zhang for a colorful ECCV project; the code can be found here.